
NASA Technical Memorandum 112876

Building Multi-Discipline,
Multi-Format Digital Libraries Using
Clusters and Buckets

Michael L. Nelson
Langley Research Center, Hampton, Virginia

August 1997

National Aeronautics and
Space Administration
Langley Research Center

 Hampton, Virginia 23681-0001

i

BUILDING MULTI-DISCIPLINE, MULTI-FORMAT DIGITAL

LIBRARIES USING CLUSTERS AND BUCKETS

by

Michael L. Nelson
B.S. May 1991, Virginia Polytechnic Institute and State University

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY

August 1997

i

ABSTRACT

BUILDING MULTI-DISCIPLINE, MULTI-FORMAT DIGITAL LIBRARIES
USING CLUSTERS AND BUCKETS

Michael L. Nelson
Old Dominion University, 1997

Co-Chairs of Advisory Committee: Dr. Kurt Maly
 Dr. Stewart N. T. Shen

Our objective was to study the feasibility of extending the Dienst protocol to

enable a multi-discipline, multi-format digital library. We implemented two new

technologies: cluster functionality and publishing buckets. We have designed a possible

implementation of clusters and buckets, and have prototyped some aspects of the

resultant digital library.

Currently, digital libraries are segregated by the disciplines they serve (computer

science, aeronautics, etc.), and by the format of their holdings (reports, software, datasets,

etc.). NCSTRL+ is a multi-discipline, multi-format digital library (DL) prototype created

to explore the feasibility of the design and implementation issues involved with created a

unified, canonical scientific and technical information (STI) DL. NCSTRL+ is based on

the Networked Computer Science Technical Report Library (NCSTRL), a World Wide

Web (WWW) accessible DL that provides access to over 80 university departments and

laboratories.

We have extended the Dienst protocol (version 4.1.8), the protocol underlying

NCSTRL, to provide the ability to cluster independent collections into a logically

ii

centralized DL based upon subject category classification, type of organization, and genre

of material. The concept of buckets provides a mechanism for publishing and managing

logically linked entities with multiple data formats. NCSTRL+ contains some of the

holdings of NCSTRL and the NASA Technical Report Server (NTRS). The prototype

demonstrates the feasibility of publishing into a multi-cluster DL, searching across

clusters, and storing and presenting buckets of information. The clusters provide

multi-discipline access, and the buckets allow for the storage and retrieval of new

information formats, increasing the availability of all forms of STI. We found that the

overhead for these additional capabilities is minimal to both the author and the user

when compared to the equivalent process within NCSTRL. We cover the current

modifications to Dienst, discuss the proposed modifications to Dienst that we are

coordinating with the NCSTRL Working Group, discuss the proposed tools to facilitate

the construction and use of buckets, and discuss additional capabilities for which clusters

and buckets provide the foundation.

iii

ACKNOWLEDGMENTS

Professors Kurt Maly and Stewart N. T. Shen provided the direct advisement for

this research.

NASA Langley Research Center has provided me with the opportunity and

resources to perform digital library research and development. In particular, I would like

to thank Gretchen Gottlich, David Bianco, Sandra Esler and Ming-Hokng Maa for their

support in earlier projects, and recently Del Croom for his support in developing bucket

prototypes.

Finally, I would like recognize the motivation for all of my professional activities:

ÒThe aeronautical and space activities of the United States shall be conducted so as to

contribute ... to the expansion of human knowledge of phenomena in the atmosphere and

space... The Administration shall ... provide for the widest practicable and appropriate

dissemination of information concerning its activities and results thereof ...Ó

 -- National Aeronautics and Space Act, 1958.

iv

v

TABLE OF CONTENTS

 PAGE

List of Tables .. vii

List of Figures ... viii

Chapter

1. INTRODUCTION ... 1

1.1 Overview and Objective .. 1

1.2 Problem Statement .. 2

1.3 Approach .. 3

2. DIGITAL LIBRARY BACKGROUND ... 5

2.1 History of STI Exchange ... 5

2.2 Digital Library Models ... 8

2.3 Multi-Discipline Digital Libraries ... 11

3. CLUSTERS OF DIENST SERVERS .. 13

3.1 History and Overview of Dienst ... 13

3.2 Clusters .. 15

4. BUCKETS ... 22

4.1 Bucket Definition ... 22

4.2 Bucket Requirements ... 25

4.3 Bucket Implementation .. 28

vi

5. NCSTRL+ TESTBED ... 31

5.1 Architecture ... 31

5.2 Metadata .. 32

5.3 Searching NCSTRL+ ... 32

5.4 Publishing into NCSTRL+ .. 36

6. FUTURE WORK .. 38

6.1 Buckets and Bucket Tools ... 38

6.2 Bucket Matching System ... 40

6.3 Hierarchical Clusters .. 43

6.4 Additional Capabilities .. 43

7. SUMMARY AND CONCLUSIONS ... 45

References .. 48

Vita ... 52

vii

LIST OF TABLES

TABLE PAGE

1. Modified Dienst Verbs .. 16

2. Defined Fields in NCSTRL+ ... 16

3. Files Modified in Dienst 4.1.8 Distribution .. 17

4. Proposed Cluster Arguments to Verbs .. 18

5. NASA STI Main Topics ... 19

6. Defined Genres in NCSTRL+ .. 21

7. Bucket Requirements ... 26

8. Required Bucket Methods ... 27

viii

LIST OF FIGURES

FIGURE PAGE

 1. Pyramid of Publications for a Single Project / Concept ... 6

 2. Pyramid of Publications Rests on Unpublished STI ... 7

 3. Digital Libraries Address Both Legacy and Future Data 9

 4. Distribution of Digital Libraries ... 9

 5. NCSTRL+ Lineage ... 13

 6. NCSTRL+ Subject Tree ... 20

 7. STI Lost in Project / Archival / Reuse Process ... 23

 8. A Typical Bucket Architecture ... 25

 9. Traditional and Bucket Repository Architectures .. 27

10. Buckets, Not Dienst, Handle Display in NCSTRL+ ... 30

11. Initial NCSTRL+ Architecture ... 31

12. Bucket + Package Metadata in a Single File (new fields in bold) 33

13. NCSTRL+ Home Page ... 34

14. The Fielded Search Screen of NCSTRL+ ... 35

15. NCSTRL+ Search Results Screen .. 36

16. A Typical Bucket Presentation ... 37

17. Author Tool ... 39

18. Management Tool ... 40

1

CHAPTER ONE

INTRODUCTION

1.1 Overview and Objective

In aerospace engineering, Multidisciplinary Design Optimization (MDO) is a growing

field concerned with the integrated design and analysis of applications using a

combination of mathematical, engineering, and economic models and tools. Surpassing its

early analysis and optimization roots, MDO now also includes Òfunctions of

interdisciplinary communicationÓ [37]. To hasten the desired adoption of MDO

methodology by other engineering research communities such as electrical and chemical

engineering [37], NASA is acutely interested in the creation of a unified, canonical digital

library of Scientific and Technical Information (STI).

The objective of our work was to study the feasibility of modifying existing digital

library systems and protocols to support the multi-discipline and multi-format

requirements. By using existing, popular digital library systems as the base for our work,

we could more quickly design, develop, and test the advanced concepts necessary for

multi-discipline and multi-format collections. Extending existing systems also increases

the chances of acceptance and usage from both the researchers that use the digital library

(DL) , and the organizations and individuals that publish into the DL.

The journal model for this thesis is Concurrency: Practice and Experience

2

1.2 Problem Statement

Spurred by recent advances in network information systems such as the World

Wide Web (WWW), DLs are the topic of research in many scientific communities.

However, digital library projects are partitioned by both the discipline they serve

(computer science, aeronautics, physics, etc.) and by the format of their holdings

(technical reports, video, software, etc.). A recent survey found over 10 existing or recent

different WWW-oriented digital library projects spanning over 5 different disciplines [8].

In short, each scientific community is hand crafting their own digital library infrastructure.

Aside from the duplication of effort, there is a risk that each discipline will become less

knowledgeable of other disciplines, as geographic balkanization gives way to Òelectronic

balkanization in Ôtopic-spaceÕÓ [41].

There are two significant problems with current digital libraries. First, multi-

discipline research is difficult because the collective knowledge of each discipline is stored

in incompatible DLs that are known only to the specialists in the field. In the MDO

example above, current DL practices prohibit a structural engineerÕs awareness of

computer or mathematical tools developed by another discipline that might be relevant to

their research. The second significant problem with digital libraries is that although

technical information consists of manuscripts, software, datasets, etc., the manuscript

receives the majority of attention, and the other components are often discarded [39].

Past format restrictions have forced an artificial partitioning of the STI output along

format lines (software tapes, photo negatives, printed reports, etc.). Although non-

3

manuscript digital libraries such as the software archive Netlib [4] are successful, they still

placed the burden of STI reintegration on the customer. NASA customers desire to have

the entire set of manuscripts, software, data, etc. available in one place [33]. With the

increasing availability of all-digital storage and transmission, the re-integration of the STI

output back to its original state is possible.

1.3 Approach

NASA Langley Research Center and Old Dominion University have established

NCSTRL+ to research methods which address the multi-discipline and multi-format

problems. NCSTRL+ is based on the Networked Computer Science Technical Report

Library (NCSTRL) [6], which is a highly successful digital library offering access to over

80 different university departments and laboratories since 1994. It is implemented using

the Dienst protocol [20]. NCSTRL+ initially includes selected holdings from the NASA

Technical Report Server (NTRS) [26] and NCSTRL, providing clusters of collections

along the dimension of disciplines such as aeronautics, space science, mathematics,

computer science, and physics, as well as clusters along the dimension of publishing

organization and genre, such as project reports, journal articles, theses, etc. NCSTRL+

holdings are published in buckets [28, 29], an object-oriented construct for creating and

managing collections of logically related information units as a single object. A bucket can

contain both different data syntax (PostScript, PDF, Word, etc.) and different data

semantics (manuscripts, data files, images, software, etc.).

4

A digital library containing buckets is important because it allows the mixing of

traditional peer-reviewed literature (Òwhite literatureÓ), pre-prints and technical reports

(Ògray literatureÓ), and data types and formats not generally archived well or at all

(datasets, software). This is especially important to NASA Langley Research Center,

where the demand and capability to produce test data has far outstripped the CenterÕs

ability to publish the summarized data through the traditional channels. Buckets will

provide a tool for strategic data management at NASA, and multi-discipline clusters will

accelerate the growth of emerging fields such as multi-disciplinary optimization.

The outline of the rest of this thesis is as follows: Chapter two provides an

overview of digital libraries and some of the fundamental issues in this field. Chapter

three provides an overview of the Dienst protocol and the modifications that were made

to support clusters. Chapter four discusses buckets and other similar technologies.

Chapter five discusses the NCSTRL+ testbed and the resulting observations. Chapter six

introduces some areas for future work, including extending the cluster and bucket

functionality as well as some additional services that clusters and buckets make possible.

We conclude with Chapter seven.

5

CHAPTER TWO

OVERVIEW OF DIGITAL LIBRARIES

2.1 History of STI Exchange

Rapidity and breadth of communication have always been significant requirements in the

exchange of STI. Scientific journals evolved in the 17th century to replace the system of

exchanging personal letters between scientists, which evolved because of unacceptable

delays in publishing books [31]. However, journals are no longer used for rapid

communication, but rather as Òa medium for priority claiming, quality control and

archiving scientific work.Ó [3] To achieve rapid communication of STI, different

disciplines have adopted various models. In computer science, the technical report is a

common unit of exchange. In some disciplines, such as high-energy physics, the pre-print

culture is well established. Paul Ginsparg, a physicist active in digital libraries, notes that

ÒThe small amount of filtering provided by refereed journals plays no effective role in our

research.Ó [11] While noting that not all disciplines embrace the pre-print / technical

report culture equally, Odlyzko [31] states Òit is rare for experts in any mathematical

subject to learn of a major new development in their area through a journal publicationÓ

and also relates comments by computer scientists Rob Pike (Òthat in his area journals

have become irrelevantÓ) and Joan Feigenbaum (Òif it didnÕt happen at a conference, it

didnÕt happenÓ).

6

A journal article is often only a fraction of the available technical literature about a

given subject. Theses, dissertations, conference papers, and technical reports are known

as Ògray literatureÓ and receive varying degrees of peer review. ÒWhite literature,Ó

available through standard publications channels and processes, is often supported by a

larger body of gray literature. The role of the large amount of gray literature and its

relation to the smaller amount of white literature, and the issues associated with

integrating the two have been present since the post-World War II U.S. Government

sponsored research boom [2, 13, 36]. David Patterson, co-inventor of the RISC computer

chip, noted that in one of his first research projects, the output was 2 journal articles, 12

conference papers, and 20 technical reports [32]. If we consider this pyramid of

publications (Figure 1) to be typical, then a journal article actually functions as an

abstract of a larger body of STI.

It is estimated that there are over 100,000 domestic technical reports produced

annually [8]. The result is that even if there are 20,000 primary research journals [3], they

do not represent the entirety of STI. These numbers do not include 1) confidential,

secret, proprietary, and otherwise restricted reports; or 2) non-report STI, such as

Journal Articles

Conference Papers

Technical Reports

Figure 1. Pyramid of Publications for a Single Project/Concept

time

7

computer software, data sets, video, geographic data, etc. Indeed, anecdotal evidence

suggests that the WWW is not just a rapid transport mechanism for white and gray

literature, but collections of WWW pages are becoming a new unit of STI exchange as

well. Figure 2 shows the Pyramid of Publications resting on a larger body of unpublished

STI.

Schatz and Chen [34] give a summary of current research projects focusing on

building large digital libraries of non-report STI. However, these efforts can be

summarized as propagating a Òseparate but equalÓ philosophy with regards to non-report

STI. Instead of integrating software, datasets, etc. into the same DL which has the

reports, separate DLs are created for the new collection. The researcher is still left to

reconstruct the original information tuple by integrating search results from various DLs.

The limitations of current STI exchange mechanisms can be summarized as:

Journal Articles

Conference Papers

Technical Reports

Figure 2. Pyramid of Publications Rests on Unpublished STI

time

software raw data notes video /
 images

8

· highly focused on journal articles, despite their decreasing value to researchers and

practitioners in some fields;

· inadequate acquisition of gray literature, the grist of technical exchange;

· inability to offer non-publication media, such as datasets, software, and video.

These limitations are largely side effects of the hard copy distribution paradigm.

As STI exchange moves toward electronic distribution, existing mechanisms should not

merely be automated, but the entire process should be revisited.

2.2 Digital Library Models

The term Òdigital libraryÓ is broad and can mean different things in various

contexts. Some projects, especially those aimed at preserving and converting historical

collections into digital format, are obviously centered around library, archival, and

preservation issues. However, if the focus includes current and future STI, then digital

library projects are just as much about publishing and data management as libraries.

Figure 3 illustrates how digital libraries cover both traditional library and publishing

realms. Figure 3 also shows the projected impact area of NCSTRL+, specifically the

present, future, and immediate past. Although Dienst has facilities to process scanned

publications, its main function is to handle present and future publishing. It has

applicability to the immediate past in that those documents are more likely to continue to

exist in electronic format.

9

From [8], we have a nomenclature for describing various DL projects. They can

be differentiated by their architecture (distributed or centralized) and by the identity of

the sponsor of the DL (traditional publishers or authoring individuals/groups). These

classification factors are important because 1) distributed architecture DLs are more likely

to be scalable then centralized DLs; and 2) a DL that accepts input from the authoring

organization / individual is more likely to be able to capture the non-manuscript STI since

the DL is ÒcloserÓ to the information source. DLs that focus on traditional publication

processes (i.e. journals), are less likely to provide access to non-manuscript STI since the

DL is far removed from the information source. Figure 4 illustrates the partitioning along

with the abbreviations for their taxonomy, and provides some example DLs of each type.

distributed centralized

traditional
publisher

authoring
individual /
organization

 DLI CORE

 NTRS, NCSTRL,
 NCSTRL+

 WATERS

Figure 4. Distribution of Digital Libraries

CP

CODO

DP

Past Future

Today

Archiving and Library Issues

Legacy Data

Data management and Publishing
Issues

Future Data

Figure 3. Digital Libraries Address Both Legacy and Future Data

NCSRL+ Impact

10

Centralized Architecture, Traditional Publisher (CP) - Input is from traditional publishing

sources such as journals and professional societies, and all input is collected in a single

physical and logical location. The server is either up or down, there is no graduated level

of availability. An example of a CP DL is the Chemistry On-line Retrieval Experiment

[7]. CORE converted several major chemistry journals into SGML, and provided access

via a specialized X Window System client.

Distributed Architecture, Traditional Publisher (DP) - Input is from traditional publishing

sources such as journals and professional societies, but the input is not transmitted to a

single physical location. The user interface may give the appearance of a central location,

but the service is comprised of several servers. An example of a DP DL is the University

of IllinoisÕ portion of the Digital Library Initiative (DLI) [35]. The DLI provides access

to several major journals across multiple disciplines in a distributed architecture system.

Centralized Architecture, Authoring Individual/Organization (CO) - Input is from either

individuals (a few papers at a time) or from an organization (papers transmitted in

batches) and the input is transferred to a central location for indexing, processing and

redistribution. An example of a CO DL is the Wide Area Technical Report Server

(WATERS) [23], a project that eventually provided the foundation for NCSTRL Lite.

11

Distributed Architecture, Authoring Individual/Organization (DO) - Input could still be

from individuals, but separate servers encourage clustering of publishers along

organizational boundaries. Input stays at the server to which it was posted and the user

interface handles querying all appropriate servers and collating and presenting the results.

NTRS, NCSTRL, and NCSTRL+ are all examples of DO DLs.

2.3 Multi-Discipline Digital Libraries

There are three ways to build a multi-discipline digital library:

1. allow each discipline to build their own digital library protocol, and the multi-

discipline library is constructed by providing a gateway function to the heterogeneous

servers; or

2. propagate a given technology or protocol to many disciplines, and the multi-discipline

library is constructed by the union of many homogenous servers; or

3. a combination of 1 and 2.

Lyceum [22] and STARTS [12] are examples of projects that focus on gatewaying

and translating requests between heterogeneous servers. Lyceum provides access to

heterogeneous servers by applying heuristics to change the search syntax and reformat the

results based on the serversÕ protocols. STARTS actually defines a language for inter-

server communication.

On the other hand, NCSTRL+ focuses on providing an extensible protocol that

can be used by many disciplines. There will probably never be a single DL protocol in

use by all sites, but rather a small set of several protocols in use. The eventual job of

translating between these protocols will be made easier if a scalable and extensible DL

12

protocol is propagated before various disciplines have such a large investment in their

own custom DL protocol that they cannot easily switch to a Dienst variant.

13

CHAPTER THREE

CLUSTERS OF DIENST SERVERS

3.1 History and Overview of Dienst

NCSTRL+ is the result of several years of research and development in digital libraries

(Figure 5). In 1992, the ARPA-funded CS-TR project began [14] as did the Langley

Technical Report Server (LTRS) [27]. In 1993, WATERS shared a code base with LTRS.

In 1994, LTRS launched the NTRS, and the CS-TR and WATERS projects formed the

basis for the current NCSTRL. In 1997, NTRS and NCSTRL formed the basis for

NCSTRL+.

We chose to implement NCSTRL+ using Dienst instead of other digital library

protocols such as TRSkit [30] because of DienstÕs success over several years of

production in NCSTRL. Dienst appears to be the most scalable, flexible, and extensible

of digital library systems we surveyed [8]. Dienst also serves as the basis for other digital

library projects, including: the Electronic Thesis and Dissertation Project [9], the

1992 1993 1994

CS-TR NCSTRL

WATERS

LTRS
(TRSkit) NTRS

1995 1996 1997

NCSTRL+

Figure 5. NCSTRL+ Lineage

14

University of Virginia undergraduate engineering thesis project [40] and the ACM SIGIR

conference proceedings project (which requires ACM authentication) [1].

While Dienst is discipline independent, it is currently discipline monolithic. It

makes no provision for knowledge of multiple subjects within its system. While it is

possible to set up a collection of Dienst servers independent of NCSTRL, there is no

provision for linking such collections of servers into a higher level meta-library. Dienst

consists of 5 components: 1) Repository Service; 2) Index Service; 3) Meta-Service; 4)

User Interface Service; and 5) Library Management Service. Each of the services has a list

of valid ÒverbsÓ that the service understands, and some of the verbs can take arguments.

Dienst uses the hypertext transfer protocol (HTTP) as a transport protocol. The

standard format is:

http://machine.name:port/Dienst/Service/Version/Verb/Arguments

An example of a valid Dienst request is:

http://repository.larc.nasa.gov:8080/Dienst/Meta/2.0/Publishers/

This contacts the Meta-Server service at repository.larc.nasa.gov and requests a

list of publishing authorities that this machine contains. Dienst names objects in

collections using the CNRI Handle system [15]. We are using the experimental and

unregistered handles of Òncstrlplus.larcÓ and Òncstrplus.odu.csÓ. Meta-data for objects is

stored in the RFC-1807 format [21].

15

The basic architecture of a Dienst system has a single entry point (Òhome pageÓ)

for user access. Each publishing authority (in practice, an authority generally

corresponds to a university department or laboratory) runs its own copy of the Dienst

software. The home page gathers the queries and dispenses the queries in parallel to each

server, gathers the results, and displays the correlated results to the user. To assist with

performance and reliability, Dienst now employs a Regional Meta-Server (RMS) to

partition all the NCSTRL participants into geographic regions. The various RMSs share

their data with the Master Meta Server (MSS) at Cornell (the home of Dienst and

NCSTRL) and achieve scalability through this hierarchical sharing of information about

where the various NCSTRL participants are on the network.

3.2 Clusters

Clusters are a way of aggregating logically grouped sub-collections in a DL along

some criteria. NCSTRL+ provides 3 clusters: organization, data genre, and subject

category (see Figure 14 for an example how the clusters are presented to the user).

NCSTRL already has a single default cluster of publishing authority, which in practice

generally maps to the authorÕs organization. Genre is a term provided by Ed Fox in a

private communication and refers to distinguishing between journal articles, technical

reports, theses and dissertations, etc. Subject category is the cluster that provides the

ability for multi-disciplinary collections to be developed. Although servers for different

disciplines could be integrated into NCSTRL+, there would be no provision for viewing

16

or searching subject based subsets of the entire collection without the subject category

cluster.

Dienst currently carries no concept of subject category or genre in its protocol,

despite having provisions for specifying keywords from the title, author(s), and abstract.

In fact, digital libraries using the Dienst protocol that register with NCSTRL have the

implicit assumption that all holdings are computer science related. To demonstrate the

addition of subject category and genre to Dienst, we added new fields for some of the

message verbs (Table 1). Table 2 lists all the fields supported in NCSTRL+. The

authority field is already defined in Dienst and serves as a default cluster.

Table 1. Modified Dienst Verbs

Service Message Verb New Argument Argument Type

Index SearchBoolean ncstrlplus_sti_topics
ncstrlplus_search_genres

optional

User Interface QueryNF implicitly applies to all fields N/A
User Interface Search none; default output modified

to include the new fields
N/A

Table 2. Defined Fields in NCSTRL+

Field New to NCSTRL+

ncstrlplus_sti_topics yes

ncstrlplus_search_genres yes

authority no

author no

title no

abstract no

17

The verb modifications listed in Table 1 were our initial attempt to demonstrate

cluster functionality to the user. The term ÒclustersÓ for this purpose is due to Carl

Lagoze, who in a private communication proposed a new Dienst service (for a total of six

Dienst services), a separate cluster service allowing the creation of clusters of Dienst

servers along arbitrary criteria. If this new cluster service is added to a future version of

Dienst, then our modifications will not be used in a production release of Dienst. Table 3

shows the files from the Dienst 4.1.8 distribution that were modified to produce the

initial functionality. Minimizing the number of source code modifications necessary was

a high priority.

Table 3. Files Modified in Dienst 4.1.8 Distribution

Modified File Comments

Config/install.config modification required for Dienst installation

Config/config_constants.pl cosmetic changes in HTML output

UI_Server/search.pl changes in printing the search interface

UI_Server/trs.pl bucket invocation

Meta/data.pl missing file needed for networked NCSTRL+
operation

Indexer/search_db.pl searching for new fields

Indexer/parse_bib_file.pl reading in new fields from bib file

Indexer/build-inverted-indexs.pl indexing new fields

A separate service may not be necessary to provide a robust cluster functionality.

An alternative to providing a new service is to provide cluster arguments to the

18

appropriate message verbs in existing clusters. Table 4 lists the proposed verb

modifications to provide clusters without a separate cluster service. However, the final

decision on the direction of the production version of Dienst will reside with the

NCSTRL Steering and Working Groups.

Table 4. Proposed Cluster Arguments to Verbs

Service Message Verb Argument Argument Type

Index List-Contents cluster= optional
Index SearchBoolean cluster= optional
Meta Publishers cluster= optional
Meta Indices cluster= optional
Meta Repositories cluster= optional
Meta Lite cluster= optional
User Interface Search none; would modify

default output to
include cluster

selector

N/A

User Interface QueryNF cluster= optional
User Interface BrowseYears cluster= optional
User Interface ListYears cluster= optional
User Interface BrowseAuthors cluster= optional
User Interface ListAuthors cluster= optional
Library Management ListClusters

(proposed)
none none

Library Management DescribeClusters
(proposed)

none none

For the NCSTRL+ prototype, we adopted the NASA STI subject categories. A

full listing of the subject categories can be found in [24]. The NASA STI topics are

attractive since they are familiar to the majority of our customer base, and they also

19

provide over 100 subtopics while producing only a small number of high level topics

(Table 5). The NASA STI topics have a decidedly aerospace slant, but they have a

reasonable description of other disciplines, and appeared to be more general than similar

listings from places such as the Defense Technical Information Center (DTIC). Most

professional societyÕs cataloging schemes are too focused on their specific discipline to

provide the general framework for NCSTRL+.

Table 5. NASA STI Main Topics

Subject Category Code

Aeronautics 01
Astronautics 12
Chemistry and Materials 23
Engineering 31
Geosciences 42
Life Sciences 51
Mathematical and Computer Sciences 59
Physics 70
Social Sciences 80
Space Sciences 88

NCSTRL+ reads its known subject and genre categories from preference files, so

future augmentation or replacement of this list should not be difficult. The NASA STI

topics are not meant to replace an institutionÕs use of any subject specific categories, such

as the ACM CR categories. Rather, NCSTRL+ will maintain a mapping of how various

specialized classification schemes map into the larger NASA STI topics (Figure 6). The

NASA STI topics for NCSTRL+ will be implemented as a new optional and repeatable

field in RFC-1807 format.

20

Table 6 shows the currently defined values for the genre cluster. These values are

drawn from our own STI experience, unlike the NASA STI subject categories which are

borrowed from an organization that is charged with maintaining such a list. Additional

values for a usable set of genres across many disciplines may need to be created. In

particular, the present genre Òdata collectionsÓ will likely be replaced by a set of more

descriptive entries. Hierarchical entries, such as that present in the NASA STI subject

categories, may be needed. Also, it may be desirable to have the ability for discipline-

centric genre codes to co-exist with NCSTRL+ general genres, much like society-defined

subject categories co-exist within the framework provided by the NASA STI subject

categories. However, more experience is needed before implementation recommendations

can be made.

 NCSTRL+
 Subject Root

Aeronautics Space
Sciences

Chemistry
& Materials

Mathematics
& CS

Astronautics Social
Sciences.

 AMS Mathematical
 Subject Classification

 ACM CR
 Categoriescross list as

appropriate

Aerodyanmics

Aerodyanmics
Characteristic

Aerodyanmics
of Bodies

Airfoil & Wing
Aerodyanmics

Figure 6. NCSTRL+ Subject Tree

21

Table 6. Defined Genres in NCSTRL+

Genre Code

Courseware 1

Agency/Project Reports 2

Contractor Reports 3

Theses/Dissertations 4

Conference Papers 5

Journal Articles 6

Technical Reports 7

Books 8

Patents 9

Data Collections 10

22

CHAPTER FOUR

BUCKETS

4.1 Bucket Definition

Buckets are entities for publishing and archiving in digital libraries. Buckets are object-

oriented container constructs in which logically grouped items can be collected, stored,

and transported as a single unit. For example, a typical research project at NASA

Langley Research Center produces information tuples: raw data, reduced data,

manuscripts, notes, software, images, video, etc. Normally, only the report part of this

information tuple is officially published and tracked. The report might reference on-line

resources, or even a CD-ROM, but these items are likely to degrade over time. Some

portions such as software, can go into separate archives (i.e., COSMIC or the Langley

Software Server) but this leaves the researcher to re-integrate the information tuple by

selecting pieces from multiple archives. Most often, the software and other items, such

as datasets are simply discarded. After 10 years, the manuscript is almost surely the

only surviving artifact of the information tuple. Figure 7 shows the stored and lost

portions of STI in the project / archival / reuse process.

23

Buckets solve this problem by allowing all the disparate information media types

to be integrated digitally in a single object. Buckets also provide a mechanism to address

the increasing problem of loss of unpublished data. Currently, Langley produces

significant amounts of data that is passed directly to its customers and a NASA report is

never written to document the project. Sometimes this is because information is lost

before a summary can be written, and with another project on the horizon, there is little

time to devote to documenting a project for future research use. Bucket technology will

allow a mechanism to collect unpublished data into a logical collection, either for current

use or to allow future documentation and publication about the project.

Buckets are designed to be highly customizable and unique. It would be possible

for large archives to have no buckets with exactly the same functionality. Not all bucket

types or applications are known at this time. However, we can describe a generalized

bucket as containing many formats of the same data item (PostScript, Word, Framemaker,

etc.) but more importantly, it can also contain collections of related non-traditional STI

materials (manuscripts, software, datasets, etc.) Thus, buckets allow the digital library

Project

manuscript

software

raw data

images

library

ftp site

thrown away

filing cabinent

User New
Project

Figure 7. STI Lost in Project / Archival / Reuse Process

project archival reuse

24

to address the long standing problem of ignoring software and other supportive material in

favor of archiving only the manuscript [39] by providing a common mechanism to keep

related STI products together. A single bucket can have multiple packages. Packages can

correspond to the semantics of the information (manuscript, software, etc.), or can be an

abstract entity such as the metadata for the entire bucket, bucket terms and conditions,

pointers to other buckets or packages, etc. A single package can have several elements,

which are typically different file formats of the same information, such as the manuscript

package having both PostScript and Adobe Acrobat (PDF) elements. Figure 8 illustrates

the architecture of a typical bucket.

Buckets are similar in concept to the Digital Objects (DOs) of the Kahn-Wilensky

Framework [16] and its derivatives. The NACA Report Server [25] is a digital library

with bucket-like objects. Buckets are also somewhat similar to the various scientific data

formats available such as netCDF, HDF, etc. [38], in that these formats seek to

canonicalize and package disparate data representations. Buckets are also somewhat

similar to experimental filesystems such as ELFS [17], which attempt to redefine the

concept of ÒfileÓ to include logical collections. The major distinguishing factor of buckets

over other proposals is that buckets contain intelligence and can be active, where most

other digital library objects, data formats, or filesystem objects are passive and the

repository or other interface contains all the intelligence. Buckets combine elements of

the above projects with the capability of intelligent agents.

25

4.2 Bucket Requirements

Buckets are intended to be either standalone objects or to be placed in digital libraries.

They have unique ids (CNRI handles) associated with them. Buckets are intended to be

useful even in repositories that are not knowledgeable about buckets in general, or

possibly just not about the specific form of buckets. Buckets should not lose

functionality when removed from their repository. The envisioned scenario is that

NCSTRL+ will eventually have moderate numbers (10s - 100s of thousands) of

intelligent, custom buckets instead of large numbers (millions) of homogenous buckets.

Figure 9 contrasts a traditional architecture of having the repository interface contain all

the intelligence and functionality with that of a bucket architecture where the repository

intelligence and functionality can be split between the repository and individual buckets.

This could be most useful when individual buckets require custom terms and conditions

Access MethodsCNRI Handle
(unique id)

 Terms and Conditions

Metadata (RFC 1807, Dublin Core)

Manuscript .ps .pdf .tex .doc

Software .tar .c .java

images .gif .jpeg

data sets .xls .tar

. . .

Figure 8. A Typical Bucket Architecture

Packages
inside the
bucket

Elements inside
the package

26

for access (security, payment, etc.). Figure 9 also illustrates a bucket gaining some

repository intelligence as it is extracted from the archive en route to becoming a

standalone bucket. Table 7 lists some additional high level bucket requirements, with

some terms such as ÒpointerÓ left undefined. Table 8 lists the required bucket methods;

other methods can be custom defined. Note that Table 8 differs from protocols such as

the Repository Access Protocol (RAP) [19] in that we have defined actions buckets

perform on themselves, not actions a repository performs on buckets. Although the two

are not mutually exclusive, the current plan is to not implement RAP for NCSTRL+.

Table 7. Bucket Requirements

Number Requirement

1. a bucket is of arbitrary size

2. a bucket has a globally unique identifier

3. a bucket contains 0 or more components, called packages (no defined limit)

4. a package contains 1 or more components, called elements (no defined limit)

5. an element can be a file, or a ÒpointerÓ to another

6. both packages and elements can be other buckets (i.e., buckets can be
nested)

7. a package can be a ÒpointerÓ to a remote bucket, package, or element
(remote package or element access requires Ògoing throughÓ the remote

hosting bucket)
8. buckets can keep internal logs of actions performed on them

9. interactions with packages or elements are made only through defined
methods on a bucket

9. buckets can initiate actions; they do not have to wait to be acted on

10. buckets can exist inside or out of a repository

27

Table 8. Required Bucket Methods

Method Description

metadata returns the bucketÕs metadata in its native form
display default method; bucket ÒunveilsÓ itself to requester
id returns the bucketÕs unique identifier (handle)
terms_and_conditions describes the nature of the bucketÕs terms and conditions
list_methods list all methods known by a bucket
list_owners list all principals that can modify the bucket
add_owner add to the list of owners
delete_owner delete from the list of owners
add_package adds a package to an existing bucket
delete_package deletes a package from an existing bucket
add_element adds an element to an existing package
delete_element deletes an element from an existing package
add_method ÒteachesÓ a new method to an existing bucket
delete_method removes a method from a bucket
copy_bucket export a copy of a bucket, original remains
move_bucket move the original bucket, no version remains

Repository Interface

intelligence

User User

Repository Interface

Archived Objects

bucket
extraction
procedure

intelligence

Archived Buckets

Figure 9. Traditional and Bucket Repository Architectures

28

4.3 Bucket Implementation

In the previous section, we defined the requirements of bucket functionality independent

of implementation. Our bucket prototypes are written in Perl 5, and make use of the fact

that Dienst uses HTTP as a transport protocol. Dienst has all of a documentÕs files

gathered into a single Unix directory. A bucket follows the same model and has all

relevant files collected together using directories from file system semantics. Thus a

Dienst administrator can cd into the appropriate directory and access the contents.

However, access for regular users occurs through the WWW. The bucket code is saved in

an index.cgi file, which is a WWW method for defining a Common Gateway Interface

(CGI) script to be run if no other file name for the directory is given. Thus, any attempt

to access a directory forces the invocation of the index.cgi file, thus protecting the bucket

contents from browsing access. The index.cgi file has the responsibility for regulating

access to the bucket contents, insuring that terms and conditions are met, negotiating

presentation strategy with the userÕs WWW client, etc.

The philosophy behind Dienst is to minimize the dependency on HTTP. Except

for the User Interface service, Dienst does not make specific assumptions about the

existence of HTTP or the Hypertext Markup Language (HTML). However, Dienst does

make very explicit assumptions about what constitutes a document and its related data

formats. Built into the protocol are the definitions of PostScript, ASCII text, inline

images, scanned images, etc. To add a new file format, such as the increasingly popular

PDF, the Dienst protocol has to be changed. If the protocol was resident only at one site,

this would be acceptable. However, Dienst servers are running at nearly 100 sites --

29

protocol additions require a coordinated logistical effort to synchronize versions and

provide uniform capability.

We favor making Dienst less knowledgeable about dynamic topics such as file

format, and making that the responsibility of buckets. In NCSTRL+, Dienst is used as an

index, search, and retrieval protocol. When the user selects an entry from the search

results, Dienst would normally have the local User Interface service use the Describe verb

to peer into the contents of the documents directory (including the bib meta data file), and

Dienst itself would control how the contents are presented to the user. In NCSTRL+, the

final step of examining the directories structure is skipped, and the directoryÕs index.cgi

file is invoked. The default method for an index.cgi is generally the display method, so

the user should notice little difference. However, at that point Dienst is no longer

determining what the user sees, the bucket is. This allows for a bucket to redefine its

default method to be terms_and_conditions, so the same repository can have some

buckets secured, and others could be open to all.

Our method of shifting responsibility from Dienst to the bucket does not build in

an explicit HTTP dependency, since the local User Interface service is not accessing the

index.cgi script across the network, but rather simply executing a script that resides on its

local filesystem. The fact that the script produces HTML output is not important to

Dienst since the bucket is now handling all future interactions. The shift in display

responsibility is shown in Figure 10.

30

user
index holdings
search / retrieve holdings
display holdings

Dienst Archive

user
index holdings
search / retrieve holdings

display holdings

Dienst Archive

Bucket

Dienst Operation in NCSTRL

Dienst / Bucket Operation in NCSTRL+

Figure 10. Buckets, Not Dienst, Handle Display in NCSTRL+

31

CHAPTER FIVE

NSCTRL+ TESTBED

5.1 Architecture

Figure 11 shows the architecture of NCSTRL+. Three machines are employed. The first

will be the home page and meta data collection/search machine, and will reside at NASA.

NASA will also house a second machine for the aeronautics cluster. Old Dominion will

use a third machine to host the computer science cluster. Although similar in appearance,

the NCSTRL+ prototype will be operationally independent of NCSTRL. At present,

only a single machine is employed. To create a networked collection independent of

NCSTRL requires a file (Meta/data.pl) that is not included in the standard Dienst

distribution. The Dienst authors have been contacted and when this file is obtained, the

architecture in Figure 11 will be achieved.

 NCSTRL+ Home Page
 metadata collection and searching

 ncstrlplus.larc.nasa.gov

 subject = aeronautics
 organization = NASA LaRC
 genre = *

 repository.larc.nasa.gov

 subject = math & cs
 organization = ODU
 genre = project reports;

 tech reports
 repository.cs.odu.edu

Figure 11. Initial NCSTRL+ Architecture

32

5.2 Metadata

Currently, all NCSTRL+ buckets use the RFC-1807 metadata format. However,

any format can be used and Dublin Core [18] is a likely format to be adopted in the

future. There is no reason that multiple metadata formats cannot be simultaneously

supported. Although logically, a bucket has its own metadata, and all its packages have

their own separate metadata, the implementation is such that all the package metadata

fields can be embedded with the single metadata file for the bucket. It is this single

metadata file that is indexed. This allows the package metadata to be searched

simultaneously, and the linkage is created so that multiple hits across many packages

within a single bucket will produce only one bucket to be returned. Figure 12 shows a

sample metadata file from NCSTRL+.

5.3 Searching NCSTRL+

NCSTRL+ searching is similar to searching with NCSTRL, with the addition of

specifying desired clusters to search. Figure 13 shows the NCSTRL+ home page, which

is designed to look as much like NCSTRL as possible. The default search from the

NCSTRL+ home page applies to all clusters. Figure 14 shows how the advanced fielded

search form of NCSTRL+ is modified, allowing the selection of desired subject categories

and data genres. Figure 15 shows a sample search results page, including the keyword and

cluster hit results. The user will select the desired bucket from this page. At that point,

the bucket will return the defined default initial interface of the bucket, which will be

dependent on the bucket contents and the rules present. In practice, the bucket

presentation will look similar to the choices available to current users of NCSTRL.

33

BIB-VERSION:: X-NCSTRL+1.0
ID:: ncstrlplus.larc//SAE-97ES-29
ENTRY:: July 16, 1997
ORGANIZATION:: NASA Langley Research Center
TYPE:: 05
TITLE:: Thermal Design and Analysis for the Cryogenic MIDAS Experiment
AUTHOR:: Amundsen, Ruth M.
DATE:: July 1997
PAGES:: 9
HANDLE:: hdl:ncstrlplus.larc//SAE-97ES-29
OTHER_ACCESS::
KEYWORD:: Cryogenic
KEYWORD:: Thermal analysis
KEYWORD:: Spaceflight
KEYWORD:: High temperature superconductors
CR-CATEGORY::
NCSTRL+CATEGORY:: 76
COPYRIGHT:: U.S. Government works are not copyrighted.
ABSTRACT:: The Materials In Devices As Superconductors (MIDAS)
spaceflight experiment is a NASA payload which launched in September
1996 on the Shuttle, and was transferred to the Mir Space Station for
several months of operation. MIDAS was developed and built at NASA
Langley Research Center (LaRC). The primary objective of the
experiment was to determine the effects of microgravity and spaceflight
on the electrical properties of high-temperature superconductive (HTS)
materials. The thermal challenge on MIDAS was to maintain the
superconductive specimens at or below 80 K for the entire operation of
the experiment, including all ground testing and 90 days of spaceflight
operation. Cooling was provided by a small tactical cryocooler. The
superconductive specimens and the coldfinger of the cryocooler were
mounted in a vacuum chamber, with vacuum levels maintained by an ion
pump. The entire experiment was mounted for operation in a stowage
locker inside Mir, with the only heat dissipation capability provided
by a cooling fan exhausting to the habitable compartment. The thermal
environment on Mir can potentially vary over the range 5 to 40 Degrees
C; this was the range used in testing, and this wide range adds to the
difficulty in managing the power dissipated from the experiment's
active components. Many issues in the thermal design are discussed,
including: thermal isolation methods for the cryogenic samples; design
for cooling to cryogenic temperatures; cryogenic epoxy bonds;
management of ambient temperature components' self-heating; and fan
cooling of the enclosed locker. Results of the design are also
considered, including the thermal gradients across the HTS samples and
cryogenic thermal strap, electronics and thermal sensor cryogenic
performance, and differences between ground and flight performance.
Modeling was performed in both SINDA-85 and MSC/PATRAN (with direct
geometry import from the CAD design tool Pro/Engineer). Advantages of
both types of models are discussed. Correlation of several models to
ground testing and flight data (where available) is presented. Both
SINDA and PATRAN models predicted the actual therma performance of the
experiment well, even without post-flight correlation adjustments of
the models.
PACKAGE:: ncstrlplus.larc//SAE-97ES-29/P1
PACKAGE-TITLE:: Conference Manuscript
PACKAGE-ABSTRACT:: Presented at 27th International Conference on Environmental
Systems, Lake Tahoe, Nevada, July 14-17, 1997.
ELEMENT-FILE:: ncstrlplus.larc//SAE-97ES-29/P1/97ES-29.doc
ELEMENT-APP:: MS Word 97 document
ELEMENT-FILE:: ncstrlplus.larc//SAE-97ES-29/P1/NASA-97-27ices.ps.Z
ELEMENT-FILE:: ncstrlplus.larc//SAE-97ES-29/P1/NASA-97-27ices.pdf
PACKAGE-END:: ncstrlplus.larc//SAE-97ES-29/P1
PACKAGE:: ncstrlplus.larc//SAE-97ES-29/P2
PACKAGE-TITLE:: Conference Presentation
PACKAGE-ABSTRACT:: Presented at 27th International Conference on Environmental
Systems , Lake Tahoe, Nevada , July 14-17, 1997.
ELEMENT-FILE:: ncstrlplus.larc//SAE-97ES-29/P2/SAE_pres97.ppt
ELEMENT-APP:: MS PowerPoint 97 presentation
PACKAGE-END:: ncstrlplus.larc//SAE-97ES-29/P2
END:: ncstrlplus.larc//SAE-97ES-29

Figure 12. Bucket + Package Metadata in a Single File (new fields in bold)

34

Figure 13. NCSTRL+ Home Page

35

Figure 14. The Fielded Search Screen of NCSTRL+

This is especially true if the buckets in which they are interested only contain

various manuscript formats. However, the real benefit is the richer presentation formats

available if the bucket has non-manuscript packages. Figure 16 illustrates a typical bucket

with packages other than a manuscript. The interface is similar to NCSTRL, with the

exception that the additional data semantics are presented (software, datasets, etc.).

36

Figure 15. NCSTRL+ Search Results Screen

5.4 Publishing into NCSTRL+

The goal of NCSTRL+ is to produce the least intrusive interface possible to the author.

The authoring process for NCSTRL+ is to be as similar to authoring into NCSTRL as

possible. Additions include the ability to add to a bucket multiple data semantics and

formats through using multiple selection boxes to select local files. At present, we are

constructing buckets by hand so that we may continue to increase our understanding of

what is required in a bucket. However, when the entire process is automated, publishing

a manuscript in NCSTRL will be equivalent to publishing a package in NCSTRL+, and

37

publishing a bucket is the sum of publishing all of its packages. The author also has to

choose the appropriate cluster to place the new bucket in. This step can be skipped if

the site manager has defined a default, or if authors have saved a value already in their

preferences.

Figure 16. A Typical Bucket Presentation

38

CHAPTER SIX

FUTURE WORK

6. 1 Buckets and Bucket Tools

We are starting with buckets authored at Old Dominion University and NASA Langley

Research Center and are choosing the initial entries to be ÒfullÓ buckets, with special

emphasis on buckets relating to NSF projects for ODU and for windtunnel and other

experimental data for NASA. Until NCSTRL+ becomes a full production system, we are

primarily seeking rich functionality buckets that contain diverse sets of packages. When

we have created enough buckets by hand, we will develop tools to facilitate the creation

and management of buckets. There are two main tools planned for bucket use. One is the

author tool, which allows the author to construct a bucket with no programming

knowledge. Figure 17 shows the prototype for the author tool. Here, the author

specifies the metadata for the entire bucket, adds packages to bucket, adds elements to the

packages, provides metadata for the packages, and selects applicable clusters (which lead

to the cluster options available as shown in Figure 14). The author tool gathers the

various packages into a single component and parses the packages based on rules defined

at the authorÕs site. Many of the options of the author tool will be set locally via the

second bucket tool, the management tool. The management tool provides an interface to

allow site managers to configure the default settings for all authors at that site. The

management tool also provides an interface to query and update buckets at a given

39

repository. Additional methods can be added to buckets residing in a repository by

invoking the add_method on them and transmitting the new code. Figure 18 shows the

prototype for the management tool interface. From this interface, the manager can halt

the archive and perform operations on it, including updating or adding packages to

individual buckets, updating or adding methods to groups of buckets, and performing

other archival management functions.

Figure 17. Author Tool

40

Figure 18. Management Tool

6.2 Bucket Matching System

The premise of the Bucket Matching System (BMS) is that the archived objects

(buckets) should handle as many tasks as possible, not humans. Toward this end, we

propose the BMS as a communications mechanism for buckets to exchange information

among themselves. The "tuple-space" communication model of the Linda programming

language [5] is the inspiration we draw upon. The following discusses some of the

functionality but not the implementation.

The following example illustrates a usage of the BMS. Consider a technical report

published by the CS department which is also submitted to a conference. The report

appears under the server maintained by the department and publishing authority which is:

ncstrl.odu.cs. If the conference paper is accepted, it will eventually be published by the

conference sponsor, say ACM. The publishing authority would be ncstrl.acm. Although

the conference paper will surely appear in a modified format, the tech report and the

41

conference paper are clearly related, despite being separated by publishing authority, date

of publication, and revisions. Two separate but related objects now exist, and are likely to

continue to exist. How best to create the desired linkage between the objects?

Òncstrl.acmÓ has neither the resources nor the interest to spend the time searching out

previous versions of a manuscript. Òncstrl.odu.csÓ can not link to the conference bucket at

the creation time of the ODU bucket, since the conference bucket did not exist at the time.

It is unrealistic to suggest that the relevant parties will go back to the ncstrl.odu.cs

collection and create the linkage correctly after 6 months have passed.

The solution is to have both buckets publish their metadata, or some subset of it,

in the BMS. When a match, or near match, is found, the buckets can either 1)

automatically link to each other; or more likely 2) bring the possible linkage to the

attention of a person, who will provide the final approval for the linkage. There are a

number of ways that a "match" can be found, but most likely it will be similar metadata

within some definable threshold (e.g., 90% similar). Other uses for the BMS could

include:

· Find similar works by different authors. The exact values would have to be

determined by experimentation, but it possible to envision a similarity

ranking that is slightly lower being an indication of a similar work by different

authors. For example, a similar work by a different author would be:

70% < similarity < 90%.

42

· Arbitrary selective dissemination of information (SDI) services. When a user's

profile is matched, a notification can be sent immediately or a digest sent at

every defined time interval (i.e., weekly). This method can be used to track

different versions of a report, not just inter-genre (technical report vs.

conference paper) or inter-institution (the author moves to a different

university) issues. If version 2.0 of a bucket comes out, it can "find" all

previous versions, and the appropriate actions can be taken (i.e., create a fully

connected graph between the buckets, delete previous buckets, etc.)

· Metadata scrubbing. The issues of maintaining consistency and quality of

meta data information is an increasingly important concern in digital libraries

[10]. If part of the BMS also included a meta data scrubber that went through

and based on rules and heuristics defined at the scrubber, it could

automatically make or suggest updates to meta data. For example, having all

references to "Hampton Institute" indicate the name change to "Hampton

University", or handle an authors name change (such as if someone changes

their name upon marriage), correct errors that may have been introduced, etc.

The BMS could be implemented on multiple workstations, and would be

primarily batch processing. Given that some of the operations would be computationally

expensive, it can be done with loose time guarantees, perhaps even done on stolen idle

cycles (from "hallway clusters").

43

6.3 Hierarchical Clusters

An aspect of clustering we are eager to explore is the concept of hierarchical

clusters. For example, under the current operation, ncstrlplus.odu.cs and

ncstrlplus.odu.me would be registered as separate publishing authorities, and would not

be subordinate to the handle ncstrlplus.odu. We feel that by delegating the naming

authority for ncstrplus.odu.cs to ncstrlplus.odu, a more scalable approach to naming and

searching is developed. The hierarchy functionality would apply to all clusters, not just

publishing authorities. This would allow for greater economy in representing subject

categories that are far from a given userÕs field. As the contents of NCSTRL+ grows,

there will need to be an easy way to Òzoom-inÓ and Òzoom-outÓ for interesting clusters.

6.4 Additional Capabilities

It is also important to note that adding a subject category mechanism to

NCSTRL+ provides the necessary groundwork for additional services for digital libraries

using Dienst. These could include subject-based browsing of NCSTRL+ holdings, as well

as selected dissemination of information (SDI). This would be most useful if users were

offered a subscription option to receive digested updates (i.e., e-mail messages) of new

additions to NCSTRL+ in specified subject areas. The initial defined subject categories

for NCSTRL+ and cross-listing them with other subject-specific categorization schemes

is intended to provide a working framework for evaluating the prototype. As more

experience in NCSTRL+Õs use is gained, the fine tuning of the subject categories and

appropriate cross listing becomes an area that would benefit from the attention of a

professional cataloger.

44

Since genre selection is not the purview of any profession, experience in choosing

the right genre types will be gained with increased interaction by participants from other

disciplines.

45

CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

Due to the increased requirements for multidisciplinary activities, NASA is interested in

the availability of a canonical, unified digital library for STI to counter the current trend of

disciplines developing their own incompatible digital libraries. To achieve this goal of a

multi-discipline, multi-format digital library, we have modified Dienst to study the

feasibility of such a library. Dienst was chosen because 1) it has been in use in NCSTRL

for several years; 2) it is an open, freely available architecture; 3) its distributed

architecture allows for scalability; and 4) it maps well to the model of an organization

(research center, laboratory, university department) as publisher. We have shown that

few code modifications are needed to add the ability to cluster around subject category or

information genre. There are many ways to provide such a clustering service; we have

chosen to demonstrate its functionality by adding subject categories and genres as

additional search fields. Since our modifications are limited in scope, we have noticed no

change in the performance profile of NCSTRL+ versus NCSTRL. We have also designed

and begun the initial prototype of buckets as a way to collect multiple data semantics and

formats together. The NCSTRL+ prototype proves that it is possible and desirable to

have a single digital library provide access to manuscripts, software, datasets, etc., as

46

opposed to the current trend of creating a separate digital library for each semantic or

format type.

NCSTRL+ is forged from the holdings of the NCSTRL and NTRS archives and

provides access to aerospace, mathematics, computer science, physics and engineering

STI. These extensions are to gain user feedback on the usefulness of this service while

awaiting the development of a generalized clustering service for Dienst. The most

significant technology from this project is the concept of buckets as a construct to

capture multiple data formats and genres in an intuitive manner. Buckets also provide a

method for capturing non-manuscript STI such as software and datasets that are currently

poorly archived or not archived at all.

Although the associated social and political problems of changing the nature of an

institutionÕs publication vector are not addressed, NCSTRL+ provides a platform for

experimentation for testing user response to multi-discipline clusters and logical

collections of STI. At this point, we have no data concerning the usefulness of buckets

and clusters to the user, or about their cost effectiveness. However, we are in the process

of experimenting with users at NASA and Old Dominion University. From the usersÕ

perspective, the publishing and searching interfaces are largely unchanged. However, it is

unknown what impact the cluster and bucket modifications have on network load, search

and retrieval times, the usersÕ perceived quality of searching multiple clusters, etc. To

determine these unknowns, NCSTRL+ will have to grow to a large enough size to be

considered a useful production system. The authors seek other users and participants for

47

NCSTRL+. Contact information, current status, and related software can be found at:

http://ncstrlplus.larc.nasa.gov/

48

References

1. ACM SIGIR On-Line Conference Proceedings,
http://turing.acm.org:8071/

2. J. Bennington, ÔThe Integration of Report Literature and JournalsÕ, American
Documentation, 3(3), 149-152, (1952).

3. B. C. Bennion, ÔWhy the Science Journal Crisis?Õ, ASIS Bulletin, February/March,
25-26, (1994).

4. S. Browne, J. Dongarra, E. Grosse, S. Green, K. Moore, T. Rowan, and R. Wade,
ÔNetlib Services and ResourcesÕ, University of Tennesse Technical Report UT-CS-
93-222, 1993.

5. N. Carriero and D. Gelernter, ÔLinda in ContextÕ, Communications of the ACM,
32(4), 444-458, (1989).

6. J. R. Davis, D. B. Krafft, and C. Lagoze, ÔDienst: Building a Production Technical
Report ServerÕ, Advances in Digital Libraries, Springer-Verlag, 1995, pp. 211-222.

7. R. Entlich, L. Garson, M. Lesk, L. Normore, J. Olsen, and S. Weibel, ÔMaking of a
Digital Library: The Chemistry Online Retrieval ExperimentÕ, Communications of
the ACM, 38(4), 54, (1995).

8. S. L. Esler and M. L. Nelson, ÔThe Evolution of Scientific and Technical
Information DistributionÕ, Journal of the American Society of Information Science,
(In Press).

9. E. Fox, J. Eaton, G. McMillan, N. Kipp, L. Weiss, E. Arce, and S. Guyer,
ÔNational Digital Library of Theses and Dissertations: A Scalable and Sustainable
Approach to Unlock University ResourcesÕ, D-Lib Magazine, The Magazine of
Digital Library Research, September 1996.
http://www.dlib.org/dlib/september96/theses/09fox.html

10. J. C. French, A. Powell and E. Schulman , ÔAutomating the Construction of
Authority Files in Digital Libraries: A Case StudyÕ, University of Virginia
Technical Report CS-97-02, January 1997.

11. P. Ginsparg, ÔFirst Steps Towards Electronic Research CommunicationÕ, Computer
in Physics, 8, 333-341, (1994).

49

12. L. Gravano, C.-C. K. Chang, H. Garcia-Molina, A. Paepcke, ÔSTARTS: Stanford
Proposal for Internet Meta-SearchingÕ, Proceedings of the 1997 ACMÊSIGMOD
International Conference On Management of Data, 1997.

13. D. E. Gray, ÔOrganizing and Servicing Unpublished ReportsÕ, American
Documentation, 4(3), 103-115, (1953).

14. R. Kahn, ÔAn Introduction to the CS-TR ProjectÕ, December 1995.
http://www.cnri.reston.va.us/home/describe.html

15. R. Kahn, ÔThe Handle System Version 3.0: An OverviewÕ,
http://www.handle.net/docs/overview.html

16. R. Kahn and R. Wilensky, ÔA Framework for Distributed Digital Object ServicesÕ,
cnri.dlib/tn95-01, May, 1995.
http://www.cnri.reston.va.us/home/cstr/arch/k-w.html

17. J. F. Karpovich, A. S. Grimshaw, J. C. French, ÔExtensible File Systems (ELFS):
An Object-Oritented Approach to High Performance File I/OÕ, Proceedings of the
Ninth Annual Conference on Object-Oriented Programming Systems, Languages
and Applications, October 1994, pp. 191-204.

18. C. Lagoze, C. A. Lynch, and R. Daniel, ÔThe Warwick Framework: A Container
Architecture for Aggregating Sets of MetadataÕ, Cornell University Computer
Science Technical Report TR-96-1593, June 1996.

19. C. Lagoze and D. Ely, ÔImplementation Issues in an Open Architectural
Framework for Digital Object ServicesÕ, Cornell University Computer Science
Technical Report, TR95-1540, June 1995.

20. C. Lagoze, E.Shaw, J. R. Davis, and D. B. Krafft, ÔDienst: Implementation
Reference ManualÕ, Cornell Computer Science Technical Report TR95-1514, 1995.

21. R. Lasher, and D. Cohen, ÔA Format for Bibliographic RecordsÕ, Internet RFC-
1807, June 1995.

22. M.-H. Maa, S. L. Esler and M. L. Nelson, ÔLyceum: A Multi-Protocol Digital
Library GatewayÕ, NASA TM-112871, July 1997.

23. K. Maly, J. French, E. Fox, and A. Selman , ÔÔWide Area Technical Report Service
- Technical Reports Online,ÕÕ Communications of the ACM, 38(4), 45, (1995).

50

24. NASA Scientific and Technical Information Program, ÔNASA STI TopicsÕ,
ftp://ftp.sti.nasa.gov/pub/scan/SCAN-TOPICS

25. National Advisory Committee for Aeronautics (NACA) Report Server.
http://www.larc.nasa.gov/naca/

26. M. L. Nelson, G. L. Gottlich, D. J. Bianco, S.S. Paulson, R. L. Binkley, Y. D.
Kellogg, C. J. Beaumont, R. B. Schmunk, M. J. Kurtz and A. Accomazzi, ÔThe
NASA Technical Report ServerÕ, Internet Research: Electronic Networking
Applications and Policy, 5(2), 25-36, (1995).

27. M. L. Nelson , G. L. Gottlich and D. J. Bianco, ÔWorld Wide Web Implementation
of the Langley Technical Report ServerÕ, NASA TM-109162, September 1994.

28. M. L. Nelson, K. Maly and S. N. T. Shen, ÔBuilding a Multi-Discipline Digital
Library Through Extending the Dienst ProtocolÕ, Proceedings of the Second ACM
International Conference on Digital Libraries, pp. 262-263, Philadelphia, PA, July
20-23, 1997.

29. M. L. Nelson, K. Maly and S. N. T. Shen, ÔBuckets, Clusters, and DienstÕ, Old
Dominion University, Computer Science Technical Report 97-30, May 1997.

30. M. L. Nelson and S. L. Esler, ÔTRSkit: A Simple Digital Library ToolkitÕ, Journal
of Internet Cataloging, 1(2), 41-55, 1997.

31. A. M. Odlyzko, ÔTragic Loss or Good Riddance? The Impending Demise of
Traditional Scholarly JournalsÕ, International Journal of Human-Computer Studies,
42, 71-122, 1995.

32. D. A. Patterson, ÔHow to Have a Bad Career in Research/AcademiaÕ, Keynote
Address at the First Symposium on Operating System Design and Implementation,
Monterey, CA, November 14-17, 1994.
http://http.cs.berkeley.edu/~patterson/talks/bad.ps

33. D. G. Roper, M. K. McCaskill, S. D. Holland, J. L. Walsh, M. L. Nelson, S. L.
Adkins, M. Y. Ambur and B. A. Campbell, ÔA Strategy for Electronic
Dissemination of NASA Langley Technical PublicationsÕ, NASA TM-109172,
December 1994.

34. B. Schatz and H. Chen, ÔBuilding Large Scale Digital LibrariesÕ, IEEE Computer,
29(5), 22-26, (1996).

51

35. B. Schatz, W. H. Mischo, T. W. Cole, J. B. Hardin, A. P. Bishop, and H. Chen,
ÔFederating Diverse Collections of Scientific LiteratureÕ, IEEE Computer, 29(5),
28-36, (1996).

36. E. W. Scott, ÔNew Patterns in Scientific Research and PublicationÕ, American
Documentation, 4(3), 90-95, (1953).

37. J. Sobieszczanski-Sobieski and R. T. Haftka, ÔMultidisciplinary Aerospace Design
Optimization: Survey of Recent DevelopmentsÕ, 34th AIAA Aerospace Sciences
Meeting and Exhibit, Reno, Nevada, AIAA Paper No. 96-0711, January 15-18,
1996.

38. I. Stern, ÔScientific Data Format Information FAQÕ, 1995.
http://www.cv.nrao.edu/fits/traffic/scidataformats/faq.html

39. J. Sobieszczanski-Sobieski, ÔA Proposal: How to Improve NASA-Developed
Computer ProgramsÕ, NASA CP-10159, 1994, pp. 58-61.

40. UVa SEAS Electronic Undergraduate Thesis Pilot,
http://univac.cs.virginia.edu:3066/SEAS_ETD.html

41. M. Van Alstyne and E. Brynjolfsson, ÔCould the Internet Balkanize Science?Õ,
Science, 274, 1479-1480, (1996).

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1997
3. REPORT TYPE AND DATES COVERED

Technical Memorandum
4. TITLE AND SUBTITLE

Building Multi-Discipline, Multi-Format Digital Libraries Using Clusters
and Buckets

5. FUNDING NUMBERS

6. AUTHOR(S)

Michael L. Nelson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-112876

11. SUPPLEMENTARY NOTES

Also published as a MS Thesis for the Old Dominion University Computer Science Department.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

UnclassifiedÐUnlimited
Subject Category 82 Distribution: Nonstandard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Our objective was to study the feasibility of extending the Dienst protocol to enable a multi-discipline, multi-
format digital library. We implemented two new technologies: cluster functionality and publishing buckets.
We have designed a possible implementation of clusters and buckets, and have prototyped some aspects of the
resultant digital library. Currently, digital libraries are segregated by the disciplines they serve (computer
science, aeronautics, etc.), and by the format of their holdings (reports, software, datasets, etc.). NCSTRL+ is a
multi-discipline, multi-format digital library (DL) prototype created to explore the feasibility of the design and
implementation issues involved with created a unified, canonical scientific and technical information (STI) DL.
NCSTRL+ is based on the Networked Computer Science Technical Report Library (NCSTRL), a World Wide
Web (WWW) accessible DL that provides access to over 80 university departments and laboratories. We have
extended the Dienst protocol (version 4.1.8), the protocol underlying NCSTRL, to provide the ability to cluster
independent collections into a logically centralized DL based upon subject category classification, type of
organization, and genre of material. The concept of buckets provides a mechanism for publishing and managing
logically linked entities with multiple data formats.

14. SUBJECT TERMS

WWW, Digital Libraries, STI, Distributed Information Retrieval
15. NUMBER OF PAGES

62

 16. PRICE CODE

A04
17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Unclassified

20. LIMITATION
 OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z-39-18
298-102

